
MNR

Gregory Burlet
gregory.burlet@mail.mcgill.ca

Alastair Porter
alastair.porter@mail.mcgill.ca

Andrew Hankinson
andrew.hankinson@mail.mcgill.ca

Ichiro Fujinaga
ich@music.mcgill.ca

NEON.JS: NEUME EDITOR ONLINE

Department of Music Research • Schulich School of Music • McGill University, CIRMMT • Montréal, Canada

Overview
Neon.js is a browser-based music notation editor written in JavaScript. The 
editor can be used to manipulate digitally encoded early musical scores in 

neume (square-note) notation.

The primary purpose of the editor is to provide a readily accessible interface to 

correct note pitch and position errors made in the process of optical music 
recognition (OMR). By being available online, the task of correcting OMR errors 
can be distributed amongst many people to accelerate the creation of ground-

truth data and errorless symbolic music collections.

Neon.js Editor
Notation Encoding
Neon.js uses scores that are encoded in the Music Encoding Initiative (MEI) 
format. MEI is an XML-based file format for the representation of many music 
notation formats.

Neon.js uses the Solesmes module, an extension to the MEI core that allows 
representation of square notes along with other specific practices particular to 
the notation system used by the monks in Solesmes, France. These practices 
include divisions (breath marks), episemata (note stresses), and unique neume 

names.

Notation Rendering
The HTML canvas element is used for rendering musical scores in Neon.js. 
Images of neumes and ligatures are stored as scalable vector graphics so that 
the score can be rendered in detail at any zoom level.

MEI files that have been created by OMR contain physical locations on the page 

of each recognized element. These bounding boxes are used to calculate where 
to draw musical symbols.

Musical symbols are drawn on top of an image of the original document. The 

user can adjust the transparency of the background image to show just the 

rendered notation, or both the background and notation.

Software Architecture
Neon.js has a client-server architecture. 

Client:

• Renders the musical score in the browser.

• Transforms user input into AJAX requests that are sent to the server.
Server:

• Receives requests from the client.

• Modifies the underlying MEI file of the score being edited.

Crowdsourcing
Crowdsourcing may be used in an OMR workflow for the purposes of quickly 
and inexpensively correcting pitch and position errors of notes in digitized 

musical documents. 

The task of correcting pitch and position errors involves dragging the 

incorrectly recognized notes to match the position of those notes on the source 
image. A typical correction task is displayed in Figure 2.

By providing an image of the original musical document for reference, a task 

that would normally require domain-specific musical knowledge can be posed 

as a comparison problem. This increases the number of possible contributors 
that can be recruited to perform correction tasks.

Figure 1. The Neon.js square-note notation 

editor rendering a page of the Liber Usualis.

Figure 2. Typical OMR errors in need of correction. 

Some recognized notes (dark) need to be moved to 

the same location as on the original score (light).

Figure 3. (a) A selection of puncta. (b) Searching a prefix tree to derive 

the porrectus neume type. The bolded arrows reveal the traversal of the tree.

Editing Functions

Neumify

In Neon.js, a neume is represented as a sequence of individual notes called 
puncta. A selection of puncta may be grouped into larger neume structures 
using the neumify function. 

In most cases, the graphical representation of a neume is not a simple 
concatenation of the selected glyphs. Since each neume is drawn differently, 
the neume type must be derived.

To derive the neume type:

1. Calculate pitch differences between notes in a selection of neumes.

2. Calculate the melodic contour of the notes (pitch up or down).

3. Search a prefix tree, where the edges represent the direction of movement 
between two consecutive notes. For notes with the melodic contour down-up, 
the search yields a porrectus neume, as in Figure 3.

mailto:gabriel@music.mcgill.ca
mailto:gabriel@music.mcgill.ca
mailto:gabriel@music.mcgill.ca
mailto:gabriel@music.mcgill.ca
mailto:gabriel@music.mcgill.ca
mailto:gabriel@music.mcgill.ca
mailto:gabriel@music.mcgill.ca
mailto:gabriel@music.mcgill.ca

